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Abstract—Humans have substantially altered the thermal
regimes of freshwater habitats worldwide, with significant
environmental consequences. There is a critical need for a com-
prehensive modeling framework for forecasting the downstream
impacts of two of the most common anthropogenic structures
that alter river water temperatures: 1) dams that selectively
release water from thermally stratified reservoirs, and 2) power
generating stations and industrial plants that use river water
for once-through cooling. These facilities change the thermal dy-
namics of the downstream waters through a complex interaction
of water release volume and temperature and the subsequent
exchange with the environment downstream. In order to stay
within the downstream temperature limits imposed by regulatory
agencies, managers must monitor not just release volumes and
temperatures, but also need to be able to forecast the thermal
impacts of their day-to-day operations on habitat which may be
hundreds of kilometers downstream. Here we describe a coupled
modeling framework that links mesoscale weather and ecological
models to generate inputs for a physically-based water temper-
ature model for monitoring and forecasting river temperatures
downstream from these facilities at fine spatiotemporal scales.
We provide an example of how this modeling framework is being
applied to a water allocation decision support system (DSS) for
the management of Endangered Species Act (ESA) listed salmon
species in the Sacramento River in California.

Index Terms—Forecasting, water resources.

I. INTRODUCTION

T HE management of freshwater resources is one of the
greatest challenges currently facing society. With in-

creasing demand for water, alteration of river systems (through
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dams, channelization, and diversions), and a changing climate,
humans are altering the water temperature regimes of riverine
habitats throughout the world. The thermal impacts of these
changes on the ecology of river ecosystems have been well
documented [1]–[5]. Two common anthropogenic structures
that impact thousands of rivers worldwide are: 1) dams and
2) power generating stations and industrial plants that use
river water for once-through cooling; (both types of structures
are hereafter referred to as “temperature altering facilities”
or TAFs). Dams can alter downstream thermal regimes by
causing a lag in the amount and temperature of the water
stored behind the reservoir, and also by the selective release of
warm or cold water from thermally stratified reservoirs. Power
plants and industrial facilities remove water from a river and
pass it through steam condensers, substantially increase the
temperature in the process, and return the water to the river. In
the United States alone there are 6,294 dams 15 m in height
[6], and 1,260 power plants and industrial facilities that each
use at least 2 million gallons of cooling water per day [7].
To protect the thermal habitat downstream from TAFs, reg-

ulatory agencies set temperature limits for specific compliance
points downstream. Managers then adjust the operations of the
TAFs to control the volume and the temperature of the dis-
charged water in an effort to stay within these limits, typically
employing a temperature observing-modeling framework to in-
form their decisions. Outflow temperatures and volumes are typ-
ically measured at the point of release from the TAFs, allowing
for evaluation of impacts immediately downstream. However,
this presents a significant challenge when the compliance point
is some distance downstream from the discharge because of the
loss of direct feedback; (it may take days for water to travel
from the discharge to the compliance point) [8]. In these situa-
tions the downstream target temperature is a complex function
of the interaction of release volume, release temperature, and
the subsequent heat exchange between the river and the envi-
ronment. In addition, water temperature compliance standards
may vary among management agencies, requiring specialized
models to inform decision support systems [9]. This has resulted
in a diverse array of water temperature models that vary widely
in scope, resolution, and complexity [1].
Much of the literature on water temperature modeling is

focused on developing the quantitative tools, using statistical
and/or physically-based methods, to reproduce observed water
temperatures [10]. Relatively little research has been focused
on linking mesoscale weather models and water temperature
models to generate accurate real-time forecasts. The latter
requires adapting existing water temperature models to account
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for error propagation that arises when coupling sensitive pa-
rameters among models [11], [12].
What is needed is a modeling framework that is capable of

taking advantage of the significant recent advances in accurate
river heat budget models [13] and spatially explicit weather
forecasting models [14] to accurately predict the temperature
dynamics of water after it is released from a TAF. This mod-
eling framework would couple these models to produce accu-
rate river temperature forecasts at mesoscales (sub-hourly at 1
km) for downstream waters, using the TAF discharge temper-
ature and flow as boundary conditions. Note that this frame-
work would not evaluate how individual TAFs alter the tem-
perature between intake and outflow, which is highly specific to
each structure. The framework would inform TAF managers of
the predicted temperature regimes under current operations, and
allow managers to quantitatively evaluate a range of alternative
operating scenarios.
Here we describe a coupled modeling framework that links

mesoscale weather and ecological models to generate inputs
for a physically based water temperature model for forecasting
river temperatures downstream from TAFs at fine spatiotem-
poral scales. While this framework was specifically developed
for regulated rivers with dams (where the upstream thermal re-
leases are controllable), it can be applied to rivers with other
anthropogenic cooling structures (power plants and industrial
plants), and also to rivers without these structures, to accurately
model the thermal landscape. We describe how this modeling
framework is being applied to a water temperature decision
support system (DSS) for the Shasta Dam for the management
of Endangered Species Act (ESA) listed salmon species in the
Sacramento River in California. Because this modeling frame-
work operates in a distributed environment and relies on web
services to link the operation of models from different domains
to provide a new forecasting capability, we also discuss impli-
cations for the future development of model webs [15].

II. METHODS

A. Integrated River Temperature Modeling Framework

The coupled modeling framework links two main compo-
nents: 1) a mesoscale weather model, which consists of the
Weather Research and Forecasting (WRF) model coupled with
Biome-BGC, an ecological component model of the Terrestrial
Observation and Prediction System (TOPS), henceforth referred
to as TOPS-WRF, and 2) a physically based water tempera-
ture model, the River Assessment for Forecasting Temperatures
(RAFT, [16]) model (Fig. 1). This integrated framework com-
bines high-quality environmental input data into a data assimi-
lation model that includes a suite of characteristics that are not
present in any other single river temperature model: 1) a high
degree of accuracy, 2) high spatial and temporal resolution (1
km and at sub-hourly intervals), 3) a predictive capability with
a multi-day forecasting range, 4) physically based to handle a
range of conditions, and 5) propagation of error and assessment
of uncertainty.

Fig. 1. The coupled modeling framework. A mesoscale weather model, the
Weather Research and Forecasting (WRF) model, Biome-BGC, an ecological
component model of the Terrestrial Observation and Prediction System (TOPS)
are linked to form TOPS-WRF. This provides the necessary input data into
the physically based water temperature model, the River Assessment for Fore-
casting Temperatures (RAFT) model. The outputs from RAFT are distributed
to the end-users through web services and an interactive web site.

B. RAFT

The RAFT model is based on a heat budget model for pre-
dicting the downstream thermal impacts of reservoir operations
[16]. The model computes rates of heat transfer to/from the river
based on weather conditions, while also calculating internal heat
movement within the river due to hydrodynamic transport. Heat
exchange due to insolation, conduction, and evaporation are all
explicitly included in the model. RAFT extends a state-space
model developed for predicting impacts of thermal effluent from
power plant operations [8] by including spatially variable mete-
orology, inputs/outputs from tributaries and water withdrawals,
and dynamic flow conditions. The state-space formulation al-
lows assimilation of available real-time temperature data and
estimation of uncertainty in model predictions. Given adequate
inputs, real-time forecasts of water temperature can be issued
up to 72 hours into the future.
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The input requirements of RAFT are typically available for
regulated rivers in the United States. These include tempera-
ture and flow measurements at the reservoir outflow and in-
coming tributaries, river channel geometry, and gridded me-
teorological predictions (Fig. 1). Real-time water temperature
and flow are monitored by federal and state agencies at the out-
flow of most dams and at multiple sites downstream. Channel
geometry data are increasingly available for many rivers due
to improvement in high-resolution surveying technology, such
as acoustic profiling and bathymetric LIDAR. Lastly, gridded
meteorological data are provided by coupling outputs from the
TOPS-WRF ecosystemmodel driven with satellite observations
of land surface conditions with numerical weather modeling.
Whereas most water temperature models are parameterized by
data from a few nearby meteorological stations, RAFT utilizes
gridded meteorological inputs to substantially improve the spa-
tial and temporal resolution of water temperature predictions.
In addition to meteorology, RAFT considers non-linear inter-

actions between flow, water temperature, and streambed temper-
ature. Flow affects both the travel time of water and the thermal
mass of the river, such that lower flows result in increased heat
exchange with the environment. In summer months, reduced
flows lead to warmer river temperatures. Furthermore, the water
column and streambed exchange heat. The streambed absorbs
a fraction of incoming solar radiation and slowly releases this
heat into the water column. Heat exchange between the two
tends to buffer the water column from high-magnitude swings
in temperature throughout the day. To account for these effects,
RAFT couples an unsteady non-uniform flow routingmodel and
streambed temperature model with standard water temperature
formulations.
RAFT estimates uncertainty in predictions by considering

the governing equations of heat flow as a stochastic dynamic
system, where water temperature is treated as a random vari-
able that is subject to error. By transforming the system dy-
namics into a particular algebraic form known as a state-space
model, the predicted state (water temperature) is reduced to a
linear function of the previous state and model inputs. Both the
process-based model and observations are subject to error due
to uncertainty in atmospheric inputs, model processes, and mea-
surement error. Using the Kalman Filter (a data-assimilation al-
gorithm), the process-based estimates are combined with obser-
vations, based on their relative uncertainty, to produce an op-
timal state estimate. Error variance is routed through the system
so that dynamic confidence bands of prediction error can be si-
multaneously computed with the state and included in the model
output.

C. TOPS-WRF

To generate the required meteorological inputs for the RAFT
model, we leveraged capabilities provided by TOPS [17],
[18]. TOPS is a modeling and data assimilation framework
that integrates observations from satellites and surface sensor
networks with ecological models and numerical weather and
climate models to produce forecasts of ecological conditions.
TOPS currently uses data from multiple satellite sensors (e.g.,
MODIS, Landsat TM/ETM+, AVHRR, and AMSR-E), multiple

meteorological station networks in the U.S. (e.g., NOAA Co-
operative Observer Program stations and agricultural weather
networks such as the California Irrigation Management Infor-
mation System), and ancillary data sources (e.g., the National
Elevation Dataset, and the USDA U.S. General Soil Map
[STATSGO2]). To provide a short-term forecasting capability,
the Weather Research and Forecasting (WRF) model (Ad-
vance Research WRF, version 3.1.1) has been integrated into
TOPS. WRF is a mesoscale numerical weather model designed
to support both research and operational forecasting, pro-
viding estimates of hundreds of atmospheric and land surface
parameters, and its software architecture provides for com-
putational parallelism [14]. This feature of WRF can greatly
reduce run-time (in total elapsed time), which is important
for time-sensitive applications, such as the application of the
RAFT model for water allocation decisions (see Application of
the modeling framework to manage ESA listed salmon below).
One limitation of weather forecastingmodels is that they have

been shown to exhibit a sensitivity to land surface conditions,
particularly soil moisture, and the lack of these observations has
been a persistent problem. One of the key advantages of inte-
grating WRF with TOPS is that soil moisture estimates from
TOPS, which are produced using a well-calibrated ecosystem
model (Biome-BGC, [19]) that incorporates satellite observa-
tions of current vegetation conditions, can be used to initialize
each WRF forecast run. Biome-BGC is a physically based bio-
geochemical cycle model that simulates fluxes and storage of
energy, water, carbon, and nitrogen for terrestrial ecosystems,
and the model captures a range of processes, from sunlight in-
terception, photosynthetic fixation of carbon, and leaf growth, to
snow accumulation and melt, and decomposition of plant litter
and soil organic matter [19]. Biome-BGC uses a daily time step
and requires spatially continuous gridded meteorological sur-
faces as inputs. Within TOPS, Biome-BGC is run in both diag-
nostic and prognostic modes. In its diagnostic mode, the model
directly ingests estimates of leaf area index (LAI) and fraction of
photosynthetically active radiation (FPAR) from satellite obser-
vations to produce estimates of photosynthesis and evapotran-
spiration. In its prognostic mode, the model dynamically sim-
ulates vegetation growth and carbon/nitrogen cycles and thus
extrapolates current ecosystem states into the future [17]. The
approach used in TOPS to couple the ecological models and nu-
merical weather models is conceptually similar to that used in
the NASA Land Information System [20], and provides an im-
proved capability for forecasting surface meteorological condi-
tions and cloud formation that is driven in part by satellite ob-
servations of current vegetation conditions. Integration of TOPS
with WRF also facilitates customized mesoscale weather fore-
casting to meet the input requirements for other models, such
as the very high spatial resolutions ( 3 km grid cell lengths)
required by the RAFT model.
To generate retrospective forecasts (hindcasts), TOPS-WRF

is driven with satellite observations of LAI and FPAR
(MOD15A2) from the MODIS instrument onboard the Terra
satellite and atmospheric boundary conditions from the NOAA
National Centers for Environmental Prediction (NCEP/NCAR)
Reanalysis data [21]. The NOAA NCEP/NCAR Reanalysis
project provides data on atmospheric conditions from 1948
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to present at a 6-hour interval. For operational forecasts,
TOPS-WRF relies on the NOAA Global Forecasting System
(GFS) high-resolution (1 degree) data to parameterize the
regional runs and set the boundary conditions. The NOAA
GFS data are available from NOAA via the NOAA Opera-
tional Model Archive and Distribution System (NOMADS).
TOPS-WRF is then used to produce the regional forecast data
for each 72-hour period at an hourly time step using nested
grids at spatial resolutions of 27 km, 9 km, and 3 km. Hourly
data are linearly interpolated to a 15-minute interval to match
the input requirements for the RAFT model.
Outputs from the TOPS-WRF coupled modeling framework

that were used to drive the RAFT model in both hindcast
and forecast mode included all the necessary meteorological
parameters (Fig. 1). Data relay between TOPS-WRF and the
RAFT model is accomplished via an OPeNDAP data service
(Open-source Project for a Network Data Access Protocol
[22]). OPeNDAP provides remote access to NetCDF and HDF
format archives and facilitates access, subsetting, and cus-
tomized data retrieval from multiple clients. This framework
allows the components of the integrated modeling framework
to run on the same server, or over the network via a set of data
services that allow the remote components to remain tightly
coupled. For both retrospective and operational forecasts,
TOPS-WRF 72-hour forecasts were updated every six hours
and ingested by the RAFT model, along with the most recent
hourly observations of outflow temperatures from the USGS
gauges, to produce forecasts of river temperature every 15
minutes for every 1 km length of river.

III. APPLICATION OF THE MODELING FRAMEWORK TO
MANAGE ESA LISTED SALMON

We applied the coupled modeling framework to a decision
support system for water operations on the Sacramento River
in California’s Central Valley. This system provides an ideal
test case because the Sacramento River supports four runs
(populations) of thermally sensitive Chinook salmon, which
require cold water for spawning, development, and growth.
The construction of Shasta Dam, and later Keswick Dam
approximately 7 km downstream (Fig. 2), blocked access for
these fish to their ancestral cold-water spawning habitat in the
high-elevation tributaries of the southern Cascade Range, and
the fish are now forced to spawn and rear in the mainstem of
the Sacramento River in the northern end of the Central Valley.
In the late summer and fall, water temperatures in the upper
portions of the Sacramento River can exceed critical thresh-
olds, having lethal and sublethal impacts on salmon eggs and
juveniles. To protect these ESA listed salmon, federal and state
regulations [23] require that dam operations release enough
cold water during the period of highest thermal stress (July to
October) to maintain temperatures downstream of Keswick
Dam below 13.3 at a series of compliance points: Balls
Ferry (42 km), Jellys Ferry (57 km), Bend Bridge (73 km),
and Red Bluff (97 km) (Fig. 2). Water managers attempt to
meet these criteria by regulating the temperature and volume of
water released from Shasta Dam. Without a forecasting model

Fig. 2. The study area on the Sacramento River for the application of the mod-
eling framework to manage ESA listed salmon. Water is released from Shasta
Dam and subsequently regulated by Keswick Dam. Managers attempt to main-
tain water temperatures below 13.3 at as many of the compliance points (or-
ange circles) downstream as possible. RAFT incorporates lateral inputs from
tributaries such as Clear Creek.

such as RAFT, operators cannot accurately predict the down-
stream temperature dynamics and rely instead on weekly mean
temperature estimates, which do not capture the significant diel
temperature variation that occurs on the Sacramento River.
Use of temperature estimates for a limited number of locations
may also mask impacts to critical habitat between compliance
points, whereas RAFT is capable of providing forecasts for the
entire river at a spatial resolution of 1 km.
We applied the modeling framework in real-time using

the initial water temperature and flow data collected by the
US Geological Survey (USGS) at the outflow from Keswick
Dam, with flow and temperature data assimilation at the
four gauged compliance points. The stream morphology and
information on channel width and depth were obtained from
the CA Department of Water Resources (CA DWR, 2002).
The channel bathymetry is characterized by a series of channel
cross-sections spaced sporadically ( 500 m apart) along the
length of the main stem of the Upper Sacramento River.
Using a hydrologic routing model [24], we performed a
suite of steady-flow simulations to compute channel geometry
characteristics (width, depth, and velocity) at each cross-section
for varying flow rates. RAFT outputs 2-dimensional filled
contour plots showing predicted river temperatures in time
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Fig. 3. Examples of the RAFT outputs and data distribution web site. a) Model predictions (red) and observed values (blue) at the first
compliance point (Balls Ferry). Note that the model captures the diel variation in water temperature; b) Model output includes the entire
“temperature landscape”, a shaded contour plot depicting river temperature time-series for all locations; and c) A dynamic website that allows
end-users to run customized reservoir-release scenarios and visualize the predicted downstream impacts. Users will be able to create graphs
such as the one shown to visualize the modeled temperatures for the current operating conditions (in this example for Sept 9, 2011, in
green), and two alternative scenarios. The above shows one scenario with similar release temperature but increased flow (red), and another
with similar flow but decreased release temperature (blue).

(15 min) and space (1 km) over the course of a week
(Fig. 3(a)). A horizontal slice through this plot is akin to a
time-series at one location, whereas a vertical slice denotes
a longitudinal temperature profile at a single point in time.
We refer to this plot as a “temperature landscape”, as it is
able to compactly display the temperature history of the
entire river (9600 points per day). Two main patterns are
evident. First, water temperature generally increases with
distance downstream from the dam. Second, diel variation
in water temperatures occurs at all locations, although the
magnitude of diel variation as well as the timing of the
minimum and maximum temperatures vary.
The model accuracy assessment and validation process is de-

scribed in detail in Pike et al. [16] and briefly summarized here.

Model accuracy was assessed by comparing predicted river
temperatures against observed river temperatures at the four
gauged compliance points. For the test period (May–November
2010) when river temperatures ranged from 9.5 to 16.6 ,
the root mean squared error of predictions ranged between
0.15 to 0.75 , depending on the location downstream of
the dam. When intermediate gauge data were assimilated, the
maximum uncertainty in predictions was between compliance
points, with maximum error of 0.25 . For forecasting, the
one-step prediction error ranged from 0.08 to 0.15 . The
72-hour forecast error approached that of the unassimilated
model (0.15 to 0.75 ). This level of accuracy was achieved
across a range of discharge scenarios from 5000 cfs to 20,000
cfs, and 8 to 13.5 .
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IV. DISTRIBUTING DATA TO USERS

The coupled modeling framework described here is an im-
portant advancement in river temperature forecasting and has
significant potential to impact how TAFs are managed. How-
ever, to be an effective operational system, data must be readily
available to fisheries and water managers via an intuitive data
interface. In addition, data should also be available to the reg-
ulatory agencies and the larger scientific community via stan-
dardized data services that simplify access and allow consis-
tent subsetting, comparison, and integration of a wide variety
of model and observational data. We have developed a dynamic
web interface, updated in real-time, that provides visual ac-
cess for water managers to the complete suite of river temper-
ature forecasts. Interactive charts created on-the-fly, along with
map-based animations, provide a variety of ways for visualizing
and interpreting the data. Through this interface, water and fish-
eries managers can view the latest 72-hour forecast, compare
the observed versus predicted water temperatures for the past
season, and run scenarios to evaluate how changes in reservoir
releases are likely to affect water temperatures in order to make
decisions about future releases. For example, for September 9,
2011, the model forecast indicates that the current operations
(11.1 and 10,800 cfs) will exceed the downstream compli-
ance temperature of 13.3 starting at river km 40 (green bub-
bles, Fig. 3(c)). Managers can then view any combination of
alternate scenarios, two at a time, along with the current oper-
ating conditions. In this example, one scenario has similar re-
lease temperature but increased flow (red bubbles, Fig. 3(c)),
and the other has similar flow but decreased release tempera-
ture (blue bubbles, Fig. 3(c)). In this example, the lower tem-
perature release scenario maintained downstream temperatures
below the compliance threshold. Optimal scenarios will depend
on the current operating conditions and available resources.
Direct access to each updated forecast for the web interface

and for scientific users is provided by a THREDDS (Thematic
Realtime Environmental Distributed Data Services) catalog
([25], see also http://www.unidata.ucar.edu/software/tds/).
For consistency with standard data protocols, the hourly
RAFT model output is stored in NetCDF files ([26], see also
http://www.unidata.ucar.edu/software/netcdf/). As each new
file is written to the server, THREDDS automatically updates
the catalog and makes the new run instantly available to the web
interface and other users via OPeNDAP (http://opendap.org/).
To further enhance usability, the model output is also served
by an ERDDAP (NOAA’s Environmental Research Division’s
Data Access Program) server [27]. ERDDAP provides both
graphical and data service capabilities and reformats data into
a multitude of formats including common text and application
formats, images, and GIS-compatible formats. Both THREDDS
and ERDDAP allow users to retrieve data directly into their
preferred working environment (MATLAB or R for example)
using a RESTful URL (conforming to the REST [representa-
tional state transfer] constraints) without downloading entire
datasets to their local systems, and without necessarily needing
to know the transport mechanism used or the format in which
the data were originally stored. Through these services, users

can retrieve multiple datasets in common formats for integra-
tion and ingestion into other models, such as fish mortality
models, or for analysis and inclusion in reports. Together, the
web interface and data services fulfill the need for real-time
visualization of the forecasts, while facilitating access to the
underlying data for use in more detailed analyses.

V. DISCUSSION

A key component of Integrated Water Resources Manage-
ment (IWRM) is the protection of aquatic ecosystems for
current and future generations [28], [29], and the modeling
framework described here can be applied to the thermal eval-
uation and management of the thousands of rivers impacted
worldwide by TAFs. This approach can be applied to any
river where the minimum input data are available: upstream
boundary temperature and flow, river geometry, and meteo-
rological inputs. The advantages and improvements that the
coupled RAFT modeling framework provides over existing
temperature models are numerous. First, this model is precise
and accurate, on the order of 0.5 , and even more when
downstream temperature observations are assimilated. This
high level of accuracy was achieved under a wide range of
release flows (5000 cfs to 20,000 cfs) and temperatures (8 to
13.5 ), validating the capability of RAFT to generate accurate
alternate release scenarios (Fig. 3(c)). Second, this model cap-
tures important temperature dynamics that occur at finer scales
than most models. The sub-hourly river temperature forecasts
at a 1 km resolution from the RAFT model are more suitable
for evaluating the ecological and physiological impacts on
aquatic organisms than existing models that provide mean daily
or weekly values [30]. Third, the coupled framework allows
for production of temperature estimates across a range of time
scales, including multi-year hindcasts, real-time predictions,
and forecasts of up to 72 hours. Forecasting is essential for
managing water releases from TAFs, where there is no direct
feedback control because the downstream water temperature
is partially dependent on future weather conditions. Hindcast
data are essential for modeling past thermal habitats to assess
conditions that may have corresponded with observed changes
in aquatic communities or fish populations, and for performing
interannual comparisons to assess relative habitat quality or
to detect multi-year trends. Finally, the physical nature of the
model allows for the quantification of factors that contribute
to thermal loading, i.e. the proportional influences of solar
radiation and air temperature, allowing for analysis of impacts
to river habitat conditions under climate change scenarios.

A. Potential for Expansion

The integrated modeling framework is highly scalable and
applicable to rivers in many regions worldwide. In the United
States the required static and dynamic inputs for RAFT can
be generated for almost any river, and many of the required
WRF fields are now operationally produced by NOAANational
Weather Service (NWS) regional forecast offices at spatial res-
olutions of 3–4 km2. While the TOPS-WRF framework, or a
similar coupled ecosystem-atmospheric modeling framework,
may be required for retrospective testing and validation of the
model implementation, it is likely that operational forecasting
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can be driven by routine NOAA NWS data products, though
this may increase uncertainty in river temperature estimates for
some regions.
The current framework is well suited to coupling with addi-

tional modeling components, which can be easily added to the
framework through the ERDDAP web services. For example,
models of temperature-dependent fish growth, such as classical
bioenergetics [31] and newer dynamic energy budget models
[32]–[34], can be adapted to incorporate the high resolution
output.
The integrated framework provides the capability to develop

long-range forecasts through coupling with statistical methods.
Stochastic weather generator (SWG) software can provide mul-
tiple realizations of future climate patterns conditioned upon
seasonal climate forecasts [35]. The stochastic simulations may
then be coupled with RAFT to generate probabilistic measures
of river water temperature at lead times of weeks to months.
In addition to stochastic weather generation, statistical models
may be developed for particular river temperature attributes
(e.g., daily temperature range, and number of hours of threshold
exceedance). While the spatial and temporal resolution of the
statistical methods are somewhat limited relative to the direct
RAFT output (i.e., point-specific and generally daily), they
substantially increase the lead times beyond the scale of the
current framework.

VI. CONCLUSION

The integrated modeling framework presented here provides
a unique example of the application of mesoscale weather
models, ecosystem models, and physically-based hydrologic
models to model river temperatures at high spatial and temporal
resolutions. The integrated system produces river temperature
estimates for every 1 km of river reach at 15-minute intervals,
and can forecast these parameters up to 72 hours in advance,
making the framework directly applicable to TAF operations
with respect to compliance for downstream water temperatures.
Data from the modeling framework are distributed to users
via a web-based decision support system, which provides both
standard visualizations of the data as well as a suite of data
services to provide users with direct access to the underlying
data for use in further analysis. As RAFT relies on inputs that
are increasingly available at the required spatial and temporal
resolutions, this framework can also be scaled to larger areas
and applied to support temperature forecasting in different river
systems. The framework also represents a successful imple-
mentation of a model web approach that uses open standards
and web services to integrate complex models from different
domains, and which applies these models to generate opera-
tional forecasts required to address an important ecological
management challenge.
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